Effect of Negative Gate Bias on Single Pulse Avalanche Ruggedness of 1.2 kV Silicon Carbide MOSFETs

When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-06, Vol.924, p.735-738
Hauptverfasser: Kakarla, Bhagyalakshmi, Nida, Selamnesh, Ziemann, Thomas, Grossner, Ulrike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby increasing heat generation and leading to thermal runaway. Therefore, keeping MOSFETs off by applying a negative gate bias should improve avalanche ruggedness. In this report, this claim is investigated by comparing single pulse avalanche ruggedness of commercial 1.2 kV, 80 mΩ planar and trench MOSFETs at -10 V and 0 V off-state gate bias. Both planar and trench devices show a small increase in their breakdown voltage with negative gate bias. However, there is no significant difference in avalanche withstanding energy. Even in investigated trench gate devices where the gate oxide is susceptible to interface as well as oxide defects, keeping the gate voltage at VGS = -10 V did not result in improvements in ruggedness.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.924.735