Reduction of Surface and PL Defects on n-Type 4H-SiC Epitaxial Films Grown Using a High Speed Wafer Rotation Vertical CVD Tool
4H-SiC homo-epitaxial films were grown using a high speed wafer rotation vertical CVD tool, and effects of wafer rotation speed during initial temperature ramping before epitaxial growth were investigated. Also, the effects of conditions during growth of the highly doped buffer layer on both surface...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-06, Vol.924, p.108-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 4H-SiC homo-epitaxial films were grown using a high speed wafer rotation vertical CVD tool, and effects of wafer rotation speed during initial temperature ramping before epitaxial growth were investigated. Also, the effects of conditions during growth of the highly doped buffer layer on both surface and PL defect densities were investigated. It was found that the wafer rotation speed during the temperature ramping has a large influence on the surface defect density of the films. Especially, triangles generated from small pits were considerably reduced in the samples grown at a higher wafer rotation speed during the temperature ramping. The phenomena could be explained as a result of suppressed interfacial reaction between down-falls (DFs) and the wafer surface. Additionally, it was found that the density of basal plane dislocations (BPDs) on a drift layer is remarkably reduced by adjusting the C/Si ratio during growth of the buffer layer grown prior to the drift layer. By applying higher wafer rotation speed during the temperature ramping and optimizing the C/Si ratio for the growth of the buffer layer, a total defect density of 0.75 cm-2 on the film, which includes DFs, triangles, DF-triangles, stacking faults (SFs) and BPDs, was achieved. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.924.108 |