Photochemical grafting of polysulfobetaine onto polyethylene and polystyrene surfaces and investigation of long‐term stability of the polysulfobetaine layer in seawater
Low‐density polyethylene (LDPE) and polystyrene (PS) films with hydrophilic surface were prepared by photochemical grafting of sulfobetaine‐based copolymer containing photolabile moiety, and long‐term stability of the hydrophilic nature of the surfaces in seawater was proved. The sulfobetaine‐based...
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2018-07, Vol.29 (7), p.1930-1938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Low‐density polyethylene (LDPE) and polystyrene (PS) films with hydrophilic surface were prepared by photochemical grafting of sulfobetaine‐based copolymer containing photolabile moiety, and long‐term stability of the hydrophilic nature of the surfaces in seawater was proved. The sulfobetaine‐based copolymer was prepared by copolymerization of N,N‐dimethyl‐N‐(3‐(methacryloylamino)propyl)‐N‐(3‐sulfopropyl) ammonium betaine with 2 or 5 mol% of N‐methacryloyl‐4‐azidoaniline, and the resulted polymers were grafted onto the plasma pretreated LDPE and PS films. The contact angle measurements were used to prove the modification as well as to follow the changes in the hydrophilicity during storage at room temperature under air atmosphere as well as in seawater at 32°C. The stability of the polymer layer was confirmed also by FTIR and AFM. Polysulfobetaine‐modified LDPE and PS surfaces exhibited significantly higher long‐term hydrophilicity compared with only plasma treated LDPE and PS surfaces. |
---|---|
ISSN: | 1042-7147 1099-1581 |
DOI: | 10.1002/pat.4302 |