Bayesian Downscaling Methods for Aggregated Count Data

Policy-critical, micro-level statistical data are often unavailable at the desired level of disaggregation. We present a Bayesian methodology for “downscaling” aggregated count data to the micro level, using an outside statistical sample. Our procedure combines numerical simulation with exact calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and resource economics review 2018-04, Vol.47 (1), p.178-194
Hauptverfasser: Michaud, Clayton P., Sproul, Thomas W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Policy-critical, micro-level statistical data are often unavailable at the desired level of disaggregation. We present a Bayesian methodology for “downscaling” aggregated count data to the micro level, using an outside statistical sample. Our procedure combines numerical simulation with exact calculation of combinatorial probabilities. We motivate our approach with an application estimating the number of farms in a region, using count totals at higher levels of aggregation. In a simulation analysis over varying population sizes, we demonstrate both robustness to sampling variability and outperformance relative to maximum likelihood. Spatial considerations, implementation of “informative” priors, non-spatial classification problems, and best practices are discussed.
ISSN:1068-2805
2372-2614
DOI:10.1017/age.2017.26