An upper bound on the double Roman domination number
A double Roman dominating function (DRDF) on a graph G = ( V , E ) is a function f : V → { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then vertex v must have at...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial optimization 2018-07, Vol.36 (1), p.81-89 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
double Roman dominating function
(DRDF) on a graph
G
=
(
V
,
E
)
is a function
f
:
V
→
{
0
,
1
,
2
,
3
}
having the property that if
f
(
v
)
=
0
, then vertex
v
must have at least two neighbors assigned 2 under
f
or one neighbor
w
with
f
(
w
)
=
3
, and if
f
(
v
)
=
1
, then vertex
v
must have at least one neighbor
w
with
f
(
w
)
≥
2
. The weight of a DRDF
f
is the value
f
(
V
)
=
∑
u
∈
V
f
(
u
)
. The
double Roman domination number
γ
dR
(
G
)
of a graph
G
is the minimum weight of a DRDF on
G
. Beeler et al. (Discrete Appl Math 211:23–29,
2016
) observed that every connected graph
G
having minimum degree at least two satisfies the inequality
γ
dR
(
G
)
≤
6
n
5
and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph
G
of order
n
with minimum degree at least two,
γ
dR
(
G
)
≤
8
n
7
. |
---|---|
ISSN: | 1382-6905 1573-2886 |
DOI: | 10.1007/s10878-018-0286-6 |