An upper bound on the double Roman domination number

A double Roman dominating function (DRDF) on a graph G = ( V , E ) is a function f : V → { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then vertex v must have at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2018-07, Vol.36 (1), p.81-89
Hauptverfasser: Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S. M., Volkmann, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A double Roman dominating function (DRDF) on a graph G = ( V , E ) is a function f : V → { 0 , 1 , 2 , 3 } having the property that if f ( v ) = 0 , then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with f ( w ) = 3 , and if f ( v ) = 1 , then vertex v must have at least one neighbor w with f ( w ) ≥ 2 . The weight of a DRDF f is the value f ( V ) = ∑ u ∈ V f ( u ) . The double Roman domination number γ dR ( G ) of a graph G is the minimum weight of a DRDF on G . Beeler et al. (Discrete Appl Math 211:23–29, 2016 ) observed that every connected graph G having minimum degree at least two satisfies the inequality γ dR ( G ) ≤ 6 n 5 and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph G of order n with minimum degree at least two, γ dR ( G ) ≤ 8 n 7 .
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-018-0286-6