Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer
An n-type helical molecule perylene diimide (PDI2) has been explored as an efficient interfacial layer between TiO 2 and perovskite for the preparation of perovskite solar cells. The extended π-conjugation of PDI2 ensures a high electron conductivity for efficient charge transport, and the oxygen at...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (22), p.10379-10387 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An n-type helical molecule perylene diimide (PDI2) has been explored as an efficient interfacial layer between TiO
2
and perovskite for the preparation of perovskite solar cells. The extended π-conjugation of PDI2 ensures a high electron conductivity for efficient charge transport, and the oxygen atoms of the carbonyl groups can chelate with uncoordinated Pb
2+
to passivate the surface defects of perovskite crystals. It thereby suppresses interfacial recombination, enhances efficiency, and reduces hysteresis and the light-soaking instability. The power conversion efficiency (PCE) of our perovskite solar cells showed negligible dependence on the thickness of the PDI2 interlayer, and the champion device achieved a high PCE of 19.84% and the hysteresis value (ΔPCE) was reduced to 2.34% compared to 6.46% in the perovskite device without the presence of the PDI2 interlayer. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C8TA02584C |