Restrained light-soaking and reduced hysteresis in perovskite solar cells employing a helical perylene diimide interfacial layer

An n-type helical molecule perylene diimide (PDI2) has been explored as an efficient interfacial layer between TiO 2 and perovskite for the preparation of perovskite solar cells. The extended π-conjugation of PDI2 ensures a high electron conductivity for efficient charge transport, and the oxygen at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (22), p.10379-10387
Hauptverfasser: Yang, Liyan, Wu, Mingliang, Cai, Feilong, Wang, Pang, Gurney, Robert S., Liu, Dan, Xia, Jianlong, Wang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An n-type helical molecule perylene diimide (PDI2) has been explored as an efficient interfacial layer between TiO 2 and perovskite for the preparation of perovskite solar cells. The extended π-conjugation of PDI2 ensures a high electron conductivity for efficient charge transport, and the oxygen atoms of the carbonyl groups can chelate with uncoordinated Pb 2+ to passivate the surface defects of perovskite crystals. It thereby suppresses interfacial recombination, enhances efficiency, and reduces hysteresis and the light-soaking instability. The power conversion efficiency (PCE) of our perovskite solar cells showed negligible dependence on the thickness of the PDI2 interlayer, and the champion device achieved a high PCE of 19.84% and the hysteresis value (ΔPCE) was reduced to 2.34% compared to 6.46% in the perovskite device without the presence of the PDI2 interlayer.
ISSN:2050-7488
2050-7496
DOI:10.1039/C8TA02584C