Cyclohedron and Kantorovich–Rubinstein Polytopes

We show that the cyclohedron (Bott–Taubes polytope) W n arises as the polar dual of a Kantorovich–Rubinstein polytope K R ( ρ ) , where ρ is an explicitly described quasi-metric (asymmetric distance function) satisfying strict triangle inequality. From a broader perspective, this phenomenon illustra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arnold mathematical journal 2018-04, Vol.4 (1), p.87-112
Hauptverfasser: Jevtić, Filip D., Jelić, Marija, Živaljević, Rade T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the cyclohedron (Bott–Taubes polytope) W n arises as the polar dual of a Kantorovich–Rubinstein polytope K R ( ρ ) , where ρ is an explicitly described quasi-metric (asymmetric distance function) satisfying strict triangle inequality. From a broader perspective, this phenomenon illustrates the relationship between a nestohedron Δ F ^ (associated to a building set F ^ ) and its non-simple deformation Δ F , where F is an irredundant or tight basis of F ^ (Definition  21 ). Among the consequences are a new proof of a recent result of Gordon and Petrov (Arnold Math. J. 3(2):205–218, 2017 ) about f -vectors of generic Kantorovich–Rubinstein polytopes and an extension of a theorem of Gelfand, Graev, and Postnikov, about triangulations of the type A, positive root polytopes.
ISSN:2199-6792
2199-6806
DOI:10.1007/s40598-018-0083-4