Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed

The demand for electrochemical energy storage technologies is rapidly increasing due to the proliferation of renewable energy sources and the emerging markets of grid‐scale battery applications. The properties of batteries are ideal for most electrical energy storage (EES) needs, yet, faced with res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-06, Vol.8 (16), p.n/a
Hauptverfasser: Chayambuka, Kudakwashe, Mulder, Grietus, Danilov, Dmitri L., Notten, Peter H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The demand for electrochemical energy storage technologies is rapidly increasing due to the proliferation of renewable energy sources and the emerging markets of grid‐scale battery applications. The properties of batteries are ideal for most electrical energy storage (EES) needs, yet, faced with resource constraints, the ability of current lithium‐ion batteries (LIBs) to match this overwhelming demand is uncertain. Sodium‐ion batteries (SIBs) are a novel class of batteries with similar performance characteristics to LIBs. Since they are composed of earth‐abundant elements, cheaper and utility scale battery modules can be assembled. As a result of the learning curve in the LIB technology, a phenomenal progression in material development has been realized in the SIB technology. In this review, innovative strategies used in SIB material development, and the electrochemical properties of anode, cathode, and electrolyte combinations are elucidated. Attractive performance characteristics are herein evidenced, based on comparative gravimetric and volumetric energy densities to state‐of‐the‐art LIBs. In addition, opportunities and challenges toward commercialization are herein discussed based on patent data trend analysis. With extensive industrial adaptations expected, the commercial prospects of SIBs look promising and this once discarded technology is set to play a major role in EES applications. The recent and remarkable progress in the field of sodium‐ion batteries (SIBs) is herein unraveled. Having thus far surpassed the emerging stage and entering the growth stage, ample opportunities for innovation remain, while sustainability remains the guiding vision. SIBs are therefore expected to complement current lithium‐ion batteries in large‐scale, stationary applications and usher in the successful integration of renewable energy technologies in the electricity grid.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.201800079