The origins of Antarctic rock glaciers: periglacial or glacial features?

In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2018-06, Vol.43 (7), p.1390-1402
Hauptverfasser: Guglielmin, Mauro, Ponti, Stefano, Forte, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In extensively glaciarized permafrost areas such as Northern Victoria Land, rock glaciers are quite common and are considered postglacial cryotic landforms. This paper reveals that two rock glaciers in Northern Victoria Land (at Adélie Cove and Strandline) that are located close to the Italian Antarctic Station (Mario Zucchelli Station) should have the same origin, although they were previously mapped as Holocene periglacial landforms and subsequently considered ice‐cored and ice‐cemented rock glaciers, respectively. In fact, by integrating different geophysical investigations and borehole stratigraphy, we show that both landforms have similar internal structures and cores of buried glacier ice. Therefore, this kind of rock glacier is possibly related to the long‐term creep of buried ice rather than to permafrost creep alone. This interpretation can be extended to the larger part of the features mapped as rock glaciers in Antarctica. In addition, a high‐reflective horizon sub‐parallel to the topographic surface was detected in Ground Probing Radar (GPR) data over a large part of the study area. Combining all the available information, we conclude that it cannot be straightforwardly interpreted as the base of the active layer but rather represents the top of a cryo‐lithological unit characterized by ice lenses within sediments that could be interpreted as the transition zone between the active layer and the long‐term permafrost table. More generally, knowledge of the subsurface ice content and, in particular, the occurrence of massive ice and its depth is crucial to make realistic and affordable forecasts regarding thermokarst development and related feedbacks involving GHG emissions, especially in the case of cryosoils rich in carbon content. Copyright © 2017 John Wiley & Sons, Ltd. The origins of Antarctic rock glaciers can be glacial due to the creep of buried glacial ice body rather than permafrost creep, Integrating geophysical methods and borehole data is mandatory to understand the origin of rock glaciers. The knowledge of the massive ice occurrence and its depth is crucial for modeling thermokarst and the landscape changes in the current climate change scenarios.
ISSN:0197-9337
1096-9837
DOI:10.1002/esp.4320