Effect of slurry concentration on erosion wear behavior of AISI 5117 steel and high-chromium white cast iron
Purpose This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In this study, the slurry erosion mechanism with particle concentration has been studied. Design/methodology/approach...
Gespeichert in:
Veröffentlicht in: | Industrial lubrication and tribology 2018-05, Vol.70 (4), p.628-638 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In this study, the slurry erosion mechanism with particle concentration has been studied.
Design/methodology/approach
The tests were carried out with particle concentrations in the range of 1-7 Wt.%, and the impact velocity of slurry stream was 15 m/s. Silica sand with a nominal size range of 500-710 µm was used as an erodent. The study revealed that the failure mode was independent of concentration.
Findings
The results showed that the erosion rate decreases with the increase in particle concentration and the variation in the reduction depends on the material. It was found that the variation of fractal dimension calculated from slope of linearized power spectral density of eroded surface image for different concentrations can be used to characterize the slurry erosion intensity in a similar manner to the erosion rate. It was also found that the variation of fractal dimension versus concentration of sand has a general trend that does not depend on magnification factor.
Originality/value
Using the gravitational measurement and image analysis, the variation of the wear with slurry concentration has been analyzed to investigate the implicated mechanisms of erosion during the process. |
---|---|
ISSN: | 0036-8792 1758-5775 |
DOI: | 10.1108/ILT-07-2016-0151 |