The data scientist profile and its representativeness in the European e-Competence framework and the skills framework for the information age

The activities in our current world are mainly supported by data-driven web applications, making extensive use of databases and data services. Such phenomenon led to the rise of Data Scientists as professionals of major relevance, which extract value from data and create state-of-the-art data artifa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information management 2017-12, Vol.37 (6), p.726-734
Hauptverfasser: Costa, Carlos, Santos, Maribel Yasmina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The activities in our current world are mainly supported by data-driven web applications, making extensive use of databases and data services. Such phenomenon led to the rise of Data Scientists as professionals of major relevance, which extract value from data and create state-of-the-art data artifacts that generate even more increased value. During the last years, the term Data Scientist attracted significant attention. Consequently, it is relevant to understand its origin, knowledge base and skills set, in order to adequately describe its profile and distinguish it from others like Business Analyst. This work proposes a conceptual model for the professional profile of a Data Scientist and evaluates the representativeness of this profile in two commonly recognized competences/skills frameworks in the field of Information and Communications Technology (ICT), namely in the European e-Competence (e-CF) framework and the Skills Framework for the Information Age (SFIA). The results indicate that a significant part of the knowledge base and skills set of Data Scientists are related with ICT competences/skills, including programming, machine learning and databases. The Data Scientist professional profile has an adequate representativeness in these two frameworks, but it is mainly seen as a multi-disciplinary profile, combining contributes from different areas, such as computer science, statistics and mathematics.
ISSN:0268-4012
1873-4707
0143-6236
DOI:10.1016/j.ijinfomgt.2017.07.010