Experimental investigations on the incremental sheet forming of commercial steel ASTM A653 CS-A G90 to predict maximum bending effort
Single point incremental sheet forming stands out mainly by using traditional CNC machines to produce small batches of parts or customized products. Thus, any excessive force in the process may compromise the integrity of the machining center or even damage the component itself, limiting its formabi...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018-06, Vol.40 (6), p.1-11, Article 322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single point incremental sheet forming stands out mainly by using traditional CNC machines to produce small batches of parts or customized products. Thus, any excessive force in the process may compromise the integrity of the machining center or even damage the component itself, limiting its formability. Hence, this work presents the design of experiments to investigate the behavior of mechanical forming forces and optimize the process. The main goal was to build a mathematical function by regression analysis that best represents the theoretical model. The equation proposed here allows to locate and estimate the maximum effort
F
z
_peak
based on five input parameters: tool diameter; wall angle; sheet thickness; vertical step size; and tool feed rate. At the same time, determine the set of data that maximize the required formability. The test was carried out using a carbide coated tool K40 and a commercial sheet steel ASTM A653 CS-A G90. The following were found: the feed rate is not significant and can be maximized to reduce production time; the tool diameter and wall angle are significant, and they have a slight influence on the forces and both depends on the design area; the vertical step size is significant and the most important parameter to leveling the process to reach maximum formability. Finally, the sheet thickness is obviously significant; however, it is also specified by the design. |
---|---|
ISSN: | 1678-5878 1806-3691 |
DOI: | 10.1007/s40430-018-1251-0 |