High degrees in random recursive trees
For n≥1, let Tn be a random recursive tree (RRT) on the vertex set [n]={1,…,n}. Let degTn(v) be the degree of vertex v in Tn, that is, the number of children of v in Tn. Devroye and Lu showed that the maximum degree Δn of Tn satisfies Δn/⌊log2n⌋→1 almost surely; Goh and Schmutz showed distribution...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2018-07, Vol.52 (4), p.560-575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For n≥1, let Tn be a random recursive tree (RRT) on the vertex set [n]={1,…,n}. Let degTn(v) be the degree of vertex v in Tn, that is, the number of children of v in Tn. Devroye and Lu showed that the maximum degree Δn
of Tn satisfies Δn/⌊log2n⌋→1 almost surely; Goh and Schmutz showed distributional convergence of Δn−⌊log2n⌋ along suitable subsequences. In this work we show how a version of Kingman's coalescent can be used to access much finer properties of the degree distribution in Tn. For any i∈ℤ, let Xi(n)=|{v∈[n]:degTn(v)=⌊logn⌋+i}|. Also, let P be a Poisson point process on ℝ with rate function λ(x)=2−x·ln2. We show that, up to lattice effects, the vectors (Xi(n), i∈ℤ) converge weakly in distribution to (P[i,i+1), i∈ℤ). We also prove asymptotic normality of Xi(n) when i=i(n)→−∞ slowly, and obtain precise asymptotics for P(Δn−log2n>i) when i(n)→∞ and i(n)/logn is not too large. Our results recover and extends the previous distributional convergence results on maximal and near‐maximal degrees in RRT. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20753 |