Macrorefugia for North American trees and songbirds: Climatic limiting factors and multi-scale topographic influences

Aim: To inform conservation planning in the face of climate change, our objectives were to map spatial patterns of tree and songbird macrorefugia; to identify climatic limiting factors by region and taxonomic group; and to quantify multi-scale topographic components of end-of-century biotic refugia....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2018-06, Vol.27 (5/6), p.690-703
Hauptverfasser: Stralberg, Diana, Carroll, Carlos, Pedlar, John H., Wilsey, Chad B., McKenney, Daniel W., Nielsen, Scott E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: To inform conservation planning in the face of climate change, our objectives were to map spatial patterns of tree and songbird macrorefugia; to identify climatic limiting factors by region and taxonomic group; and to quantify multi-scale topographic components of end-of-century biotic refugia. Location: United States and Canada outside the far north. Time period: End of the 21st century. Major taxa studied: Trees and songbirds. Methods: We used species distribution models for 324 trees and 268 songbirds to develop a macrorefugia index using species-specific climate velocity. Maps of multispecies refugia potential were developed for each taxonomic/functional group and quantile regression was used to identify climatic limiting factors and relationships with multi-scale topographic variables. Results: End-of-century macrorefugia for both trees and songbirds were concentrated in western mountains and, to a lesser extent, in north-eastern coastal regions. For the highest-value refugia, precipitation was generally most limiting in the north, and warm temperatures and moisture availability were limiting in the south. Tree refugia were more limited by precipitation and moisture, while songbird refugia were more limited by temperature. Upper-percentile refugia, but not median values, were well explained by topographic conditions. Songbird refugia were strongly associated with elevation, while coastal proximity and landform composition (particularly headwaters) were important for both groups. There was a general lack of concordance between patterns of current species richness and future climate refugia. Main conclusions: Macrorefugia patterns are partly explained by steep elevational or latitudinal temperature gradients and/or moderate climates, such as coastal regions. However, climatic limiting factors for these refugia suggest contrasts in the ecological processes governing warm-end range limits for different taxa in different regions. Our framework can be applied to other regions, taxa, and time periods to generate and explain biologically meaningful indices of macrorefugia for conservation planning.
ISSN:1466-822X
1466-8238
DOI:10.1111/geb.12731