A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit
In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2018-07, Vol.71 (7), p.1273-1333 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1333 |
---|---|
container_issue | 7 |
container_start_page | 1273 |
container_title | Communications on pure and applied mathematics |
container_volume | 71 |
creator | Lindblad, Hans Luo, Chenyun |
description | In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.21734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047376599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047376599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-e619d34140704721cceb35634e48959b004431e8132858d9621e502cdb8649ae3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQQBdRsFYP_oMFTx7S7lc-9lhDqoWABfW8bJIJ3ZJm090EKfjjjY0HL56GgTdv4CF0T8mCEsKWZacXjMZcXKAZJTIOCKfsEs0IoSTgkSDX6Mb7_bhSkfAZ-lrhrTPWGZz53hx0Dx7X1uF-Bzi1h86B96ZoAGdDAw5nx0H3xrYTpHFujoOp8Kfpd3jtAPDb4GpdAn6yQ1tpd8K6rc6yTVv-1eXmYPpbdFXrxsPd75yjj3X2nr4E-evzJl3lQclkLAKIqKy4oILERMSMliUUPIy4AJHIUBaECMEpJJSzJEwqGTEKIWFlVSSRkBr4HD1M3s7Z4wC-V3s7uHZ8qdho5HEUSjlSjxNVOuu9g1p1biziTooS9RNXjXHVOe7ILif20zRw-h9U6XY1XXwDhzx6Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047376599</pqid></control><display><type>article</type><title>A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit</title><source>Wiley Online Library All Journals</source><creator>Lindblad, Hans ; Luo, Chenyun</creator><creatorcontrib>Lindblad, Hans ; Luo, Chenyun</creatorcontrib><description>In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21734</identifier><language>eng</language><publisher>New York: John Wiley and Sons, Limited</publisher><subject>Compressibility ; Estimates ; Euler-Lagrange equation ; Eulers equations ; Fluid flow ; Free boundaries ; Free surfaces ; Incompressible flow ; Mathematical analysis</subject><ispartof>Communications on pure and applied mathematics, 2018-07, Vol.71 (7), p.1273-1333</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-e619d34140704721cceb35634e48959b004431e8132858d9621e502cdb8649ae3</citedby><cites>FETCH-LOGICAL-c2974-e619d34140704721cceb35634e48959b004431e8132858d9621e502cdb8649ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21734$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21734$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Lindblad, Hans</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><title>A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit</title><title>Communications on pure and applied mathematics</title><description>In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.</description><subject>Compressibility</subject><subject>Estimates</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Fluid flow</subject><subject>Free boundaries</subject><subject>Free surfaces</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQQBdRsFYP_oMFTx7S7lc-9lhDqoWABfW8bJIJ3ZJm090EKfjjjY0HL56GgTdv4CF0T8mCEsKWZacXjMZcXKAZJTIOCKfsEs0IoSTgkSDX6Mb7_bhSkfAZ-lrhrTPWGZz53hx0Dx7X1uF-Bzi1h86B96ZoAGdDAw5nx0H3xrYTpHFujoOp8Kfpd3jtAPDb4GpdAn6yQ1tpd8K6rc6yTVv-1eXmYPpbdFXrxsPd75yjj3X2nr4E-evzJl3lQclkLAKIqKy4oILERMSMliUUPIy4AJHIUBaECMEpJJSzJEwqGTEKIWFlVSSRkBr4HD1M3s7Z4wC-V3s7uHZ8qdho5HEUSjlSjxNVOuu9g1p1biziTooS9RNXjXHVOe7ILif20zRw-h9U6XY1XXwDhzx6Fg</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Lindblad, Hans</creator><creator>Luo, Chenyun</creator><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201807</creationdate><title>A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit</title><author>Lindblad, Hans ; Luo, Chenyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-e619d34140704721cceb35634e48959b004431e8132858d9621e502cdb8649ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Compressibility</topic><topic>Estimates</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Fluid flow</topic><topic>Free boundaries</topic><topic>Free surfaces</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindblad, Hans</creatorcontrib><creatorcontrib>Luo, Chenyun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindblad, Hans</au><au>Luo, Chenyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit</atitle><jtitle>Communications on pure and applied mathematics</jtitle><date>2018-07</date><risdate>2018</risdate><volume>71</volume><issue>7</issue><spage>1273</spage><epage>1333</epage><pages>1273-1333</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><abstract>In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.</abstract><cop>New York</cop><pub>John Wiley and Sons, Limited</pub><doi>10.1002/cpa.21734</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2018-07, Vol.71 (7), p.1273-1333 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_2047376599 |
source | Wiley Online Library All Journals |
subjects | Compressibility Estimates Euler-Lagrange equation Eulers equations Fluid flow Free boundaries Free surfaces Incompressible flow Mathematical analysis |
title | A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priori%20Estimates%20for%20the%20Compressible%20Euler%20Equations%20for%20a%20Liquid%20with%20Free%20Surface%20Boundary%20and%20the%20Incompressible%20Limit&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Lindblad,%20Hans&rft.date=2018-07&rft.volume=71&rft.issue=7&rft.spage=1273&rft.epage=1333&rft.pages=1273-1333&rft.issn=0010-3640&rft.eissn=1097-0312&rft_id=info:doi/10.1002/cpa.21734&rft_dat=%3Cproquest_cross%3E2047376599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047376599&rft_id=info:pmid/&rfr_iscdi=true |