A Priori Estimates for the Compressible Euler Equations for a Liquid with Free Surface Boundary and the Incompressible Limit

In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2018-07, Vol.71 (7), p.1273-1333
Hauptverfasser: Lindblad, Hans, Luo, Chenyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove a new type of energy estimate for the compressible Euler equations with free boundary, with a boundary part and an interior part. These can be thought of as a generalization of the energies in Christodoulou and Lindblad to the compressible case and do not require the fluid to be irrotational. In addition, we show that our estimates are in fact uniform in the sound speed k. As a consequence, we obtain convergence of solutions of compressible Euler equations with a free boundary to solutions of the incompressible equations, generalizing the result of Ebin to when you have a free boundary. In the incompressible case our energies reduce to those in Christodoulou and Lindblad, and our proof in particular gives a simplified proof of their estimates with improved error estimates. Since for an incompressible irrotational liquid with free surface there are small data global existence results, our result leaves open the possibility of long‐time existence also for slightly compressible liquids with a free surface.© 2017 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21734