Spatial Autoregressive Conditional Heteroskedasticity Models

This study proposes a spatial extension of time series autoregressive conditional heteroskedasticity (ARCH) models to those for areal data. We call the spatially extended ARCH models as spatial ARCH (S-ARCH) models. S-ARCH models specify conditional variances given surrounding observations, which co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2017/12/28, Vol.47(2), pp.221-236
Hauptverfasser: Sato, Takaki, Matsuda, Yasumasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a spatial extension of time series autoregressive conditional heteroskedasticity (ARCH) models to those for areal data. We call the spatially extended ARCH models as spatial ARCH (S-ARCH) models. S-ARCH models specify conditional variances given surrounding observations, which constitutes a good contrast with time series ARCH models that specify conditional variances given past observations. We estimate the parameters of S-ARCH models by a two-step procedure of least squares and the quasi maximum likelihood estimation, which are validated to be consistent and asymptotically normal. We demonstrate the empirical properties by simulation studies and real data analysis of land price data in Tokyo areas.
ISSN:1882-2754
1348-6365
DOI:10.14490/jjss.47.221