A Geometrical Representation of Primitive Pythagorean Triples

Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 1997-05, Vol.90 (5), p.350-354
1. Verfasser: Bonsangue, Martin Vern
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 5
container_start_page 350
container_title The Mathematics teacher
container_volume 90
creator Bonsangue, Martin Vern
description Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)
doi_str_mv 10.5951/MT.90.5.0350
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204687354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ545166</ericid><jstor_id>27970182</jstor_id><sourcerecordid>27970182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs7lwqDbp2a92PhopRalRaLjOuQySQ6pe2MyVTovzcy0p13cw-cj3s5B4BLBEdMMXS_KEYqyREkDB6BASYE5pBJfAwGEGKWM8HVKTiLcQXTUAkH4GGczVyzcV2orVlnb64NLrptZ7q62WaNz5ah3tRd_e2y5b77NB9NcGabFaFu1y6egxNv1tFd_O0heH-cFpOnfP46e56M57lFQtKc2tJUZYWNF8wSLkqPKmWN8xWvpKKk4kx4Zz2iVJCSSku8IAJyD2mJMcRkCG76u21ovnYudnrV7MI2vdQYUi4FYTRBt_9BSBKlsEAIJequp2xoYgzO6zYlNGGvEdS_LepFoVWS-rfFhF_1uEsFHdDpC6MMcZ7s695exa4JBx8LJSCSmPwA8kB2aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204687354</pqid></control><display><type>article</type><title>A Geometrical Representation of Primitive Pythagorean Triples</title><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Bonsangue, Martin Vern</creator><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><description>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.90.5.0350</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Coordinate systems ; Education ; Educational Resources ; Educational Strategies ; Geoboards ; Geometric Concepts ; Geometric Constructions ; Geometry ; Grade 6 ; Higher Education ; Integers ; Interdisciplinary Approach ; Lesson plans ; Manipulative Materials ; Mathematical beauty ; Mathematics Activities ; Mathematics education ; Mathematics Instruction ; Mathematics Teachers ; Number Concepts ; Number theory ; Polygons ; Pythagorean Theorem ; Pythagoreanism ; Ratios ; Secondary Education ; Teaching Methods ; Triangles</subject><ispartof>The Mathematics teacher, 1997-05, Vol.90 (5), p.350-354</ispartof><rights>Copyright © 1997 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics May 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27970182$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27970182$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27848,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ545166$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><title>A Geometrical Representation of Primitive Pythagorean Triples</title><title>The Mathematics teacher</title><description>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</description><subject>Coordinate systems</subject><subject>Education</subject><subject>Educational Resources</subject><subject>Educational Strategies</subject><subject>Geoboards</subject><subject>Geometric Concepts</subject><subject>Geometric Constructions</subject><subject>Geometry</subject><subject>Grade 6</subject><subject>Higher Education</subject><subject>Integers</subject><subject>Interdisciplinary Approach</subject><subject>Lesson plans</subject><subject>Manipulative Materials</subject><subject>Mathematical beauty</subject><subject>Mathematics Activities</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Mathematics Teachers</subject><subject>Number Concepts</subject><subject>Number theory</subject><subject>Polygons</subject><subject>Pythagorean Theorem</subject><subject>Pythagoreanism</subject><subject>Ratios</subject><subject>Secondary Education</subject><subject>Teaching Methods</subject><subject>Triangles</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs7lwqDbp2a92PhopRalRaLjOuQySQ6pe2MyVTovzcy0p13cw-cj3s5B4BLBEdMMXS_KEYqyREkDB6BASYE5pBJfAwGEGKWM8HVKTiLcQXTUAkH4GGczVyzcV2orVlnb64NLrptZ7q62WaNz5ah3tRd_e2y5b77NB9NcGabFaFu1y6egxNv1tFd_O0heH-cFpOnfP46e56M57lFQtKc2tJUZYWNF8wSLkqPKmWN8xWvpKKk4kx4Zz2iVJCSSku8IAJyD2mJMcRkCG76u21ovnYudnrV7MI2vdQYUi4FYTRBt_9BSBKlsEAIJequp2xoYgzO6zYlNGGvEdS_LepFoVWS-rfFhF_1uEsFHdDpC6MMcZ7s695exa4JBx8LJSCSmPwA8kB2aQ</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Bonsangue, Martin Vern</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19970501</creationdate><title>A Geometrical Representation of Primitive Pythagorean Triples</title><author>Bonsangue, Martin Vern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Coordinate systems</topic><topic>Education</topic><topic>Educational Resources</topic><topic>Educational Strategies</topic><topic>Geoboards</topic><topic>Geometric Concepts</topic><topic>Geometric Constructions</topic><topic>Geometry</topic><topic>Grade 6</topic><topic>Higher Education</topic><topic>Integers</topic><topic>Interdisciplinary Approach</topic><topic>Lesson plans</topic><topic>Manipulative Materials</topic><topic>Mathematical beauty</topic><topic>Mathematics Activities</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Mathematics Teachers</topic><topic>Number Concepts</topic><topic>Number theory</topic><topic>Polygons</topic><topic>Pythagorean Theorem</topic><topic>Pythagoreanism</topic><topic>Ratios</topic><topic>Secondary Education</topic><topic>Teaching Methods</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonsangue, Martin Vern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ545166</ericid><atitle>A Geometrical Representation of Primitive Pythagorean Triples</atitle><jtitle>The Mathematics teacher</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>90</volume><issue>5</issue><spage>350</spage><epage>354</epage><pages>350-354</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.90.5.0350</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 1997-05, Vol.90 (5), p.350-354
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_204687354
source Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Coordinate systems
Education
Educational Resources
Educational Strategies
Geoboards
Geometric Concepts
Geometric Constructions
Geometry
Grade 6
Higher Education
Integers
Interdisciplinary Approach
Lesson plans
Manipulative Materials
Mathematical beauty
Mathematics Activities
Mathematics education
Mathematics Instruction
Mathematics Teachers
Number Concepts
Number theory
Polygons
Pythagorean Theorem
Pythagoreanism
Ratios
Secondary Education
Teaching Methods
Triangles
title A Geometrical Representation of Primitive Pythagorean Triples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometrical%20Representation%20of%20Primitive%20Pythagorean%20Triples&rft.jtitle=The%20Mathematics%20teacher&rft.au=Bonsangue,%20Martin%20Vern&rft.date=1997-05-01&rft.volume=90&rft.issue=5&rft.spage=350&rft.epage=354&rft.pages=350-354&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.90.5.0350&rft_dat=%3Cjstor_proqu%3E27970182%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204687354&rft_id=info:pmid/&rft_ericid=EJ545166&rft_jstor_id=27970182&rfr_iscdi=true