A Geometrical Representation of Primitive Pythagorean Triples
Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)
Gespeichert in:
Veröffentlicht in: | The Mathematics teacher 1997-05, Vol.90 (5), p.350-354 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 5 |
container_start_page | 350 |
container_title | The Mathematics teacher |
container_volume | 90 |
creator | Bonsangue, Martin Vern |
description | Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR) |
doi_str_mv | 10.5951/MT.90.5.0350 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_204687354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ545166</ericid><jstor_id>27970182</jstor_id><sourcerecordid>27970182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs7lwqDbp2a92PhopRalRaLjOuQySQ6pe2MyVTovzcy0p13cw-cj3s5B4BLBEdMMXS_KEYqyREkDB6BASYE5pBJfAwGEGKWM8HVKTiLcQXTUAkH4GGczVyzcV2orVlnb64NLrptZ7q62WaNz5ah3tRd_e2y5b77NB9NcGabFaFu1y6egxNv1tFd_O0heH-cFpOnfP46e56M57lFQtKc2tJUZYWNF8wSLkqPKmWN8xWvpKKk4kx4Zz2iVJCSSku8IAJyD2mJMcRkCG76u21ovnYudnrV7MI2vdQYUi4FYTRBt_9BSBKlsEAIJequp2xoYgzO6zYlNGGvEdS_LepFoVWS-rfFhF_1uEsFHdDpC6MMcZ7s695exa4JBx8LJSCSmPwA8kB2aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204687354</pqid></control><display><type>article</type><title>A Geometrical Representation of Primitive Pythagorean Triples</title><source>Periodicals Index Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Bonsangue, Martin Vern</creator><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><description>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.90.5.0350</identifier><identifier>CODEN: MATAAP</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Coordinate systems ; Education ; Educational Resources ; Educational Strategies ; Geoboards ; Geometric Concepts ; Geometric Constructions ; Geometry ; Grade 6 ; Higher Education ; Integers ; Interdisciplinary Approach ; Lesson plans ; Manipulative Materials ; Mathematical beauty ; Mathematics Activities ; Mathematics education ; Mathematics Instruction ; Mathematics Teachers ; Number Concepts ; Number theory ; Polygons ; Pythagorean Theorem ; Pythagoreanism ; Ratios ; Secondary Education ; Teaching Methods ; Triangles</subject><ispartof>The Mathematics teacher, 1997-05, Vol.90 (5), p.350-354</ispartof><rights>Copyright © 1997 The National Council of Teachers of Mathematics, Inc.</rights><rights>Copyright National Council of Teachers of Mathematics May 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27970182$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27970182$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27848,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ545166$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><title>A Geometrical Representation of Primitive Pythagorean Triples</title><title>The Mathematics teacher</title><description>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</description><subject>Coordinate systems</subject><subject>Education</subject><subject>Educational Resources</subject><subject>Educational Strategies</subject><subject>Geoboards</subject><subject>Geometric Concepts</subject><subject>Geometric Constructions</subject><subject>Geometry</subject><subject>Grade 6</subject><subject>Higher Education</subject><subject>Integers</subject><subject>Interdisciplinary Approach</subject><subject>Lesson plans</subject><subject>Manipulative Materials</subject><subject>Mathematical beauty</subject><subject>Mathematics Activities</subject><subject>Mathematics education</subject><subject>Mathematics Instruction</subject><subject>Mathematics Teachers</subject><subject>Number Concepts</subject><subject>Number theory</subject><subject>Polygons</subject><subject>Pythagorean Theorem</subject><subject>Pythagoreanism</subject><subject>Ratios</subject><subject>Secondary Education</subject><subject>Teaching Methods</subject><subject>Triangles</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs7lwqDbp2a92PhopRalRaLjOuQySQ6pe2MyVTovzcy0p13cw-cj3s5B4BLBEdMMXS_KEYqyREkDB6BASYE5pBJfAwGEGKWM8HVKTiLcQXTUAkH4GGczVyzcV2orVlnb64NLrptZ7q62WaNz5ah3tRd_e2y5b77NB9NcGabFaFu1y6egxNv1tFd_O0heH-cFpOnfP46e56M57lFQtKc2tJUZYWNF8wSLkqPKmWN8xWvpKKk4kx4Zz2iVJCSSku8IAJyD2mJMcRkCG76u21ovnYudnrV7MI2vdQYUi4FYTRBt_9BSBKlsEAIJequp2xoYgzO6zYlNGGvEdS_LepFoVWS-rfFhF_1uEsFHdDpC6MMcZ7s695exa4JBx8LJSCSmPwA8kB2aQ</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Bonsangue, Martin Vern</creator><general>National Council of Teachers of Mathematics</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8A4</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19970501</creationdate><title>A Geometrical Representation of Primitive Pythagorean Triples</title><author>Bonsangue, Martin Vern</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1784-4cbadbd2af75c367bf1d9caefd6d8943d657fecf14473b48c3f73706f04b22023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Coordinate systems</topic><topic>Education</topic><topic>Educational Resources</topic><topic>Educational Strategies</topic><topic>Geoboards</topic><topic>Geometric Concepts</topic><topic>Geometric Constructions</topic><topic>Geometry</topic><topic>Grade 6</topic><topic>Higher Education</topic><topic>Integers</topic><topic>Interdisciplinary Approach</topic><topic>Lesson plans</topic><topic>Manipulative Materials</topic><topic>Mathematical beauty</topic><topic>Mathematics Activities</topic><topic>Mathematics education</topic><topic>Mathematics Instruction</topic><topic>Mathematics Teachers</topic><topic>Number Concepts</topic><topic>Number theory</topic><topic>Polygons</topic><topic>Pythagorean Theorem</topic><topic>Pythagoreanism</topic><topic>Ratios</topic><topic>Secondary Education</topic><topic>Teaching Methods</topic><topic>Triangles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonsangue, Martin Vern</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Education Periodicals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Education Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonsangue, Martin Vern</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ545166</ericid><atitle>A Geometrical Representation of Primitive Pythagorean Triples</atitle><jtitle>The Mathematics teacher</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>90</volume><issue>5</issue><spage>350</spage><epage>354</epage><pages>350-354</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><coden>MATAAP</coden><abstract>Describes activities that use geoboards to explore properties of polygons such as the relationship between a polygon's number of sides and the sum of its interior angles. Describes a generalized method for constructing any Pythagorean triangle. (DDR)</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.90.5.0350</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5769 |
ispartof | The Mathematics teacher, 1997-05, Vol.90 (5), p.350-354 |
issn | 0025-5769 2330-0582 |
language | eng |
recordid | cdi_proquest_journals_204687354 |
source | Periodicals Index Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Coordinate systems Education Educational Resources Educational Strategies Geoboards Geometric Concepts Geometric Constructions Geometry Grade 6 Higher Education Integers Interdisciplinary Approach Lesson plans Manipulative Materials Mathematical beauty Mathematics Activities Mathematics education Mathematics Instruction Mathematics Teachers Number Concepts Number theory Polygons Pythagorean Theorem Pythagoreanism Ratios Secondary Education Teaching Methods Triangles |
title | A Geometrical Representation of Primitive Pythagorean Triples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Geometrical%20Representation%20of%20Primitive%20Pythagorean%20Triples&rft.jtitle=The%20Mathematics%20teacher&rft.au=Bonsangue,%20Martin%20Vern&rft.date=1997-05-01&rft.volume=90&rft.issue=5&rft.spage=350&rft.epage=354&rft.pages=350-354&rft.issn=0025-5769&rft.eissn=2330-0582&rft.coden=MATAAP&rft_id=info:doi/10.5951/MT.90.5.0350&rft_dat=%3Cjstor_proqu%3E27970182%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204687354&rft_id=info:pmid/&rft_ericid=EJ545166&rft_jstor_id=27970182&rfr_iscdi=true |