Bio-based triacetic acid lactone in the synthesis of azaheterocycles via a ring-opening transformation
In the present article a new way of converting bio-based triacetic acid lactone (TAL) into azaheterocyclic compounds, such as 4-pyridones, pyrazoles, isoxazolines and isoxazoles, has been found. The main strategy involves the transformation of TAL into reactive and multifunctional polycarbonyl inter...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2018, Vol.42 (11), p.8943-8952 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present article a new way of converting bio-based triacetic acid lactone (TAL) into azaheterocyclic compounds, such as 4-pyridones, pyrazoles, isoxazolines and isoxazoles, has been found. The main strategy involves the transformation of TAL into reactive and multifunctional polycarbonyl intermediates serving as C-6 building blocks for the construction of organic compounds. TAL undergoes a ring opening transformation with aliphatic and aromatic amines, including bioavailable amines, under solvent free conditions or in EtOH to give carbamoylated enaminones (40–98%). These polyfunctional compounds have been converted into biologically important pyridone-3-carboxamides (91–99%) with dimethylformamide dimethyl acetal and also react regioselectively with hydrazines and hydroxylamine to form pyrazolyl- (72–96%) and (isoxazolinyl)acetoamides (60–91%). The conversion of TAL into hetarylacetic acid amides can be performed as one-pot reactions without isolation of polycarbonyl intermediates. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/C8NJ01044G |