Efficient Object Detection Using Embedded Binarized Neural Networks

Memory performance is a key bottleneck for deep learning systems. Binarization of both activations and weights is one promising approach that can best scale to realize the highest energy efficient system using the lowest possible precision. In this paper, we utilize and analyze the binarized neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2018-06, Vol.90 (6), p.877-890
Hauptverfasser: Kung, Jaeha, Zhang, David, van der Wal, Gooitzen, Chai, Sek, Mukhopadhyay, Saibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Memory performance is a key bottleneck for deep learning systems. Binarization of both activations and weights is one promising approach that can best scale to realize the highest energy efficient system using the lowest possible precision. In this paper, we utilize and analyze the binarized neural network in doing human detection on infrared images. Our results show comparable algorithmic performance of binarized versus 32bit floating-point networks, with the added benefit of greatly simplified computation and reduced memory overhead. In addition, we present a system architecture designed specifically for computation using binary representation that achieves at least 4× speedup and the energy is improved by three orders of magnitude over GPU.
ISSN:1939-8018
1939-8115
DOI:10.1007/s11265-017-1255-5