Load relief control of launch vehicle using aerodynamic angle estimation

A nonlinear closed-loop load relief scheme is proposed to reduce the aerodynamic load during the ascent phase of a launch vehicle. The proposed controller is designed based on a back-stepping and sliding-mode control scheme with aerodynamic angle feedback. A hybrid load-relief strategy using the loa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2018-06, Vol.232 (8), p.1598-1605
Hauptverfasser: Oh, Gyeongtaek, Park, Jongho, Park, Jeongha, Lee, Hongju, Kim, Youdan, Shin, Sang-Joon, Ahn, Jaemyung, Cho, Sangbum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A nonlinear closed-loop load relief scheme is proposed to reduce the aerodynamic load during the ascent phase of a launch vehicle. The proposed controller is designed based on a back-stepping and sliding-mode control scheme with aerodynamic angle feedback. A hybrid load-relief strategy using the load relief scheme around the period of the maximum dynamic pressure and the traditional minimum-drift scheme during the other period is proposed. An aerodynamic angle estimator is also developed using a Kalman filter for the feedback of the load relief control. Numerical simulation is conducted to demonstrate the performance of the proposed strategy as well as the potential benefits.
ISSN:0954-4100
2041-3025
DOI:10.1177/0954410017699435