An Auroral Boundary‐Oriented Model of Subauroral Polarization Streams (SAPS)

An empirical model of subauroral polarization stream (SAPS) electric fields has been developed using measurements of ion drifts and particle precipitation made by the Defense Meteorological Satellite Program from 1987 to 2012 and Dynamics Explorer 2 as functions of magnetic local time (MLT), magneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2018-04, Vol.123 (4), p.3154-3169
Hauptverfasser: Landry, R. G., Anderson, P. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An empirical model of subauroral polarization stream (SAPS) electric fields has been developed using measurements of ion drifts and particle precipitation made by the Defense Meteorological Satellite Program from 1987 to 2012 and Dynamics Explorer 2 as functions of magnetic local time (MLT), magnetic latitude, the auroral electrojet index (AE), hemisphere, and day of year. Over 500,000 subauroral passes are used. This model is oriented in degree magnetic latitude equatorward of the aurora and takes median values instead of the mean to avoid the contribution of low occurrence frequency subauroral ion drifts so that the model is representative of the much more common, latitudinally broad, low‐amplitude SAPS field. The SAPS model is in broad agreement with previous statistical efforts in the variation of the SAPS field with MLT and magnetic activity level, although the median field is weaker. Furthermore, we find that the median SAPS field is roughly conjugate in both hemispheres for all seasons, with a maximum in SAPS amplitude and width found for 1800–2000 MLT. The SAPS amplitude is found to vary seasonally only from about 1800–2000 MLT, maximizing in both hemispheres during equinox months. Because this feature exists despite controlling for the AE index, it is suggested that this is due to a seasonal variation in the flux tube averaged ionospheric conductance at MLT sectors where it is more likely that one flux tube footprint is in darkness while the other is in daylight. Key Points An empirical SAPS model is produced from decades of satellite measurements of the ionosphere The median SAPS electric field is in agreement with previous studies and has a latitudinal profile that varies strongly with local time SAPS are found to be statistically conjugate between hemispheres for every season and maximize in amplitude during solar equinox
ISSN:2169-9380
2169-9402
DOI:10.1002/2017JA024921