A multiobjective sensor placement optimization for SHM systems considering Fisher information matrix and mode shape interpolation
Sensor placement optimization plays a key role in structural health monitoring (SHM) of large mechanical structures. Given the existence of an effective damage identification procedure, the problem arises as to how the acquisition points should be placed for optimal efficiency of the detection syste...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2019-04, Vol.35 (2), p.519-535 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sensor placement optimization plays a key role in structural health monitoring (SHM) of large mechanical structures. Given the existence of an effective damage identification procedure, the problem arises as to how the acquisition points should be placed for optimal efficiency of the detection system. The global multiobjective optimization of sensor locations for structural health monitoring systems is studied in this paper. First, a laminated composite plate is modelled using Finite Element Method (FEM) and put into modal analysis. Then, multiobjective genetic algorithms (GAs) are adopted to search for the optimal locations of sensors. Numerical issues arising in the selection of the optimal sensor configuration in structural dynamics are addressed. A method of multiobjective sensor locations optimization using the collected information by Fisher Information Matrix (FIM) and mode shape interpolation is presented in this paper. The sensor locations are prioritized according to their ability to localize structural damage based on the eigenvector sensitivity method. The proposed method presented in this paper allows to distribute the points of acquisition on a structure in the best possible way so as to obtain both data of greater modal information and data for better modal reconstruction from a minimum point interpolation. Numerical example and test results show that the proposed method is effective to distribute a reduced number of sensors on a structure and at the same time guarantee the quality of information obtained. The results still indicate that the modal configuration obtained by multiobjective optimization does not become trivial when a set of modes is used in the construction of the objective function. This strategy is an advantage in experimental modal analysis tests, since it is only necessary to acquire signals in a limited number of points, saving time and operational costs. |
---|---|
ISSN: | 0177-0667 1435-5663 |
DOI: | 10.1007/s00366-018-0613-7 |