On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives

Initial-boundary value problems for second order fully nonlinear PDEs with Caputo time fractional derivatives of order less than one are considered in the framework of viscosity solution theory. Associated boundary conditions are Dirichlet and Neumann, and they are considered in the strong sense and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2018-06, Vol.25 (3), Article 23
1. Verfasser: Namba, Tokinaga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Initial-boundary value problems for second order fully nonlinear PDEs with Caputo time fractional derivatives of order less than one are considered in the framework of viscosity solution theory. Associated boundary conditions are Dirichlet and Neumann, and they are considered in the strong sense and the viscosity sense, respectively. By a comparison principle and Perron’s method, unique existence for the Cauchy–Dirichlet and Cauchy–Neumann problems are proved.
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-018-0513-y