Fabrication of p-type SrCuSeF/n-type In^sub 2^O^sub 3^:Sn bilayer ohmic tunnel junction and its application to the back contact of CdS/CdTe solar cells
To develop polycrystalline thin-film tandem solar cells, a SrCuSeF/In2O3:Sn (ITO) bilayer film was studied. The transparent p-type conductive SrCuSeF layer was deposited by pulsed laser deposition (PLD), and the n-type conductive ITO layer was deposited by RF sputtering. The SrCuSeF/ITO bilayer film...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2017-08, Vol.56 (8), p.08MC18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To develop polycrystalline thin-film tandem solar cells, a SrCuSeF/In2O3:Sn (ITO) bilayer film was studied. The transparent p-type conductive SrCuSeF layer was deposited by pulsed laser deposition (PLD), and the n-type conductive ITO layer was deposited by RF sputtering. The SrCuSeF/ITO bilayer film showed ohmic I–V characteristics. A tunnel junction between the p-type SrCuSeF and n-type ITO layers was successfully formed because the p-type SrCuSeF and the n-type ITO layers had sufficiently high carrier concentrations. The SrCuSeF/ITO bilayer film was applied as the back contact of a CdS/CdTe solar cell. The photovoltaic performance of the CdS/CdTe solar cell depends considerably on the thickness of the SrCuSeF layer. The CdTe solar cell with a back contact of the SrCuSeF layer with a thickness of 34 nm and the ITO layer with a thickness of 200 nm showed a high conversion efficiency of 14.3% (V OC = 804 mV, J SC = 27.5 mA/cm2, and FF = 0.65). The conversion efficiency was much higher than that of the CdTe solar cell with the SrCuSeF single-layer back contact (11.6%) and that of the CdTe cell with the ITO single-layer back contact (2.75%). |
---|---|
ISSN: | 0021-4922 1347-4065 |