A simple hybrid approach to recognizing textual entailment
We explore various machine learning-based classifiers applied to rule-based features for recognizing textual entailment. The features, extracted with a set of synthesized matching rules, reflect syntactic and semantic similarity between the text and the hypothesis. The fact that we use only seven re...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2018-01, Vol.34 (5), p.2873-2885 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We explore various machine learning-based classifiers applied to rule-based features for recognizing textual entailment. The features, extracted with a set of synthesized matching rules, reflect syntactic and semantic similarity between the text and the hypothesis. The fact that we use only seven relatively simple features makes our method suitable for low-resource languages. We test our method on the test sets of the RTE competitions and achieve accuracy of up to 69.13%. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-169474 |