On the Ultra Long Propagation of Felt Ground Motion Due to the M w 8.3 Deep-Focus Sea-of-Okhotsk Earthquake of May 24, 2013
This study uses macroseismic data and wave equations to solve the problem of ultra long propagation of felt ground motion (over 9000 km from the epicenter) due to the Sea-of-Okhotsk earthquake. We show that the principal mechanism of this phenomenon could be excitation of a previously unknown standi...
Gespeichert in:
Veröffentlicht in: | Journal of volcanology and seismology 2018-03, Vol.12 (2), p.128-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study uses macroseismic data and wave equations to solve the problem of ultra long propagation of felt ground motion (over 9000 km from the epicenter) due to the Sea-of-Okhotsk earthquake. We show that the principal mechanism of this phenomenon could be excitation of a previously unknown standing radial wave as a mode of the Earth’s free oscillations, 0S0, due to the superposition of an incident and a reflected spherical P wave in the epicentral area of the Sea-of-Okhotsk earthquake. The standing wave generates slowly attenuating P waves that travel over the earth’s surface that act as carrying waves; when superposed on these, direct body waves acquire the ability to travel over great distances. We show previously unknown parameters of the radial mode 0S0 for the initial phase of earth deformation due to the large deep-focus earthquake. We used data on the Sea-of-Okhotsk and Bolivian earthquakes to show that large deep-focus earthquakes can excite free oscillations of the Earth that are not only recorded by instrumental means, but are also felt by people, with the amplification of the macroseismic effect being directly related to the phenomenon of resonance for multistory buildings. |
---|---|
ISSN: | 0742-0463 1819-7108 |
DOI: | 10.1134/S0742046318020057 |