Deep feedback GMDH-type neural network and its application to medical image analysis of MRI brain images

The deep feedback group method of data handling (GMDH)-type neural network is applied to the medical image analysis of MRI brain images. In this algorithm, the complexity of the neural network is increased gradually using the feedback loop calculations. The deep neural network architecture is automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2018-06, Vol.23 (2), p.161-172
Hauptverfasser: Takao, Shoichiro, Kondo, Sayaka, Ueno, Junji, Kondo, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The deep feedback group method of data handling (GMDH)-type neural network is applied to the medical image analysis of MRI brain images. In this algorithm, the complexity of the neural network is increased gradually using the feedback loop calculations. The deep neural network architecture is automatically organized so as to fit the complexity of the medical images using the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The recognition results show that the deep feedback GMDH-type neural network algorithm is useful for the medical image analysis of MRI brain images, because the optimum neural network architectures fitting the complexity of the medical images are automatically organized so as to minimize the prediction error criterion defined as AIC or PSS.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-017-0410-1