Antioxidant Supplements Block the Response of HDL to Simvastatin-Niacin Therapy in Patients With Coronary Artery Disease and Low HDL

One strategy for treating coronary artery disease (CAD) patients with low HDL cholesterol (HDL-C) is to maximally increase the HDL-C to LDL-C ratio by combining lifestyle changes with niacin (N) plus a statin. Because HDL can prevent LDL oxidation, the low-HDL state also may benefit clinically from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2001-08, Vol.21 (8), p.1320-1326
Hauptverfasser: Cheung, Marian C, Zhao, Xue-Qiao, Chait, Alan, Albers, John J, Brown, B Greg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One strategy for treating coronary artery disease (CAD) patients with low HDL cholesterol (HDL-C) is to maximally increase the HDL-C to LDL-C ratio by combining lifestyle changes with niacin (N) plus a statin. Because HDL can prevent LDL oxidation, the low-HDL state also may benefit clinically from supplemental antioxidants. Lipoprotein changes over 12 months were studied in 153 CAD subjects with low HDL-C randomized to take simvastatin and niacin (S-N), antioxidants (vitamins E and C, β-carotene, and selenium), S-N plus antioxidants (S-N+A), or placebo. Mean baseline plasma cholesterol, triglyceride, LDL-C, and HDL-C levels of the 153 subjects were 196, 207, 127, and 32 mg/dL, respectively. Without S-N, lipid changes were minor. The S-N and S-N+A groups had comparably significant reductions (P ≤0.001) in plasma cholesterol, triglyceride, and LDL-C. However, increases in HDL-C, especially HDL2-C, were consistently higher in the S-N group than in the S-N+A group (25% vs 18% and 42% vs 0%, respectively). With S-N, but not with S-N+A, there was a selective increase in apolipoprotein (apo) A-I (64%) in HDL particles containing apo A-I but not A-II [Lp(A-I)] and their particle size. Thus, in CAD patients with low HDL-C, S-N substantially increased HDL2-C, Lp(A-I), and HDL particle size. These favorable responses were blunted by the antioxidants used owing to a striking selective effect on Lp(A-I). This unexpected adverse interaction between antioxidants and lipid therapy may have important implications for the management of CAD.
ISSN:1079-5642
1524-4636
DOI:10.1161/hq0801.095151