Visual information extraction

Typographic and visual information is an integral part of textual documents. Most information extraction (IE) systems ignore most of this visual information, processing the text as a linear sequence of words. Thus, much valuable information is lost. In this paper, we show how to make use of this vis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2006-07, Vol.10 (1), p.1-15
Hauptverfasser: Aumann, Yonatan, Feldman, Ronen, Liberzon, Yair, Rosenfeld, Benjamin, Schler, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Typographic and visual information is an integral part of textual documents. Most information extraction (IE) systems ignore most of this visual information, processing the text as a linear sequence of words. Thus, much valuable information is lost. In this paper, we show how to make use of this visual information for IE. We present an algorithm that allows to automatically extract specific fields of the document (such as the title, author, etc.) based exclusively on the visual formatting of the document, without any reference to the semantic content. The algorithm employs a machine learning approach, whereby the system is first provided with a set of training documents in which the target fields are manually tagged and automatically learns how to extract these fields in future documents. We implemented the algorithm in a system for automatic analysis of documents in PDF format. We present experimental results of applying the system on a set of financial documents, extracting nine different target fields. Overall, the system achieved a 90% accuracy. [PUBLICATION ABSTRACT]
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-006-0014-x