Mitochondrial Function Is Involved in LDL Oxidation Mediated by Human Cultured Endothelial Cells

Human endothelial cells (ECs) grown under standard conditions are able to generate a basal level of oxygen free radicals and induce progressive oxidation of LDLs. Inhibition of cell-mediated LDL oxidation by superoxide dismutase, EDTA, or desferrioxamine implicates a role for superoxide anion and/or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 1997-08, Vol.17 (8), p.1575-1582
Hauptverfasser: Mabile, Laurence, Meilhac, Olivier, Escargueil-Blanc, Isabelle, Troly, Muriel, Pieraggi, Marie-Therese, Salvayre, Robert, Negre-Salvayre, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human endothelial cells (ECs) grown under standard conditions are able to generate a basal level of oxygen free radicals and induce progressive oxidation of LDLs. Inhibition of cell-mediated LDL oxidation by superoxide dismutase, EDTA, or desferrioxamine implicates a role for superoxide anion and/or transition metals in this process. The potential role of the mitochondrion was investigated by inducing mitochondrial deenergization by selective photosensitization or the addition of inhibitors of the mitochondrial respiratory chain. Mitochondria of human cultured ECs were selectively damaged by photosensitization of cells labeled with the mitochondrion-selective fluorescent dye 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide under conditions that induced only low levels of toxicity during the time of the experiment. Photosensitized ECs exhibited severe mitochondrial dysfunction, as suggested by the defect in mitochondrial uptake of the mitochondrion-selective fluorescent dyes [rhodamine 123 and 2-(4-dimethylaminostyryl)-1-methylpyridinium iodide] and morphological alterations as shown by transmission electron microscopy. In mitochondria-photosensitized cells, superoxide anion generation was strongly decreased, as was LDL oxidation and the subsequent cytotoxicity. When ECs were incubated with the mitochondrial respiratory-chain inhibitors antimycin A or rotenone or with the carbonylcyanide-m-chlorophenylhydrazone uncoupler rhodamine 123, uptake and subcellular distribution were altered, and concomitantly superoxide anion production and LDL oxidation were strongly decreased. In conclusion, these data suggest that mitochondrial function is required, directly or indirectly, for the production of superoxide anion and the subsequent LDL oxidation by human vascular ECs. (Arterioscler Thromb Vasc Biol. 1997;17:1575-1582.)
ISSN:1079-5642
1524-4636
DOI:10.1161/01.atv.17.8.1575