Suslin trees, the bounding number, and partition relations

We investigate the unbalanced ordinary partition relations of the form λ → (λ, α) 2 for various values of the cardinal λ and the ordinal α. For example, we show that for every infinite cardinal κ, the existence of a κ+-Suslin tree implies κ + ↛ ( κ + , log κ ( κ + ) + 2) 2 . The consistency of the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2018-04, Vol.225 (2), p.771-796
Hauptverfasser: Raghavan, Dilip, Todorcevic, Stevo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the unbalanced ordinary partition relations of the form λ → (λ, α) 2 for various values of the cardinal λ and the ordinal α. For example, we show that for every infinite cardinal κ, the existence of a κ+-Suslin tree implies κ + ↛ ( κ + , log κ ( κ + ) + 2) 2 . The consistency of the positive partition relation b → (b, α)2 for all α < ω 1 for the bounding number b is also established from large cardinals.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-018-1677-1