Improved bounds on the Hadwiger–Debrunner numbers
Let HD d ( p , q ) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the ( p , q )-property ( p ≥ q ≥ d + 1). In a celebrated proof of the Hadwiger–Debrunner conjecture, Alon and Kleitman proved that HD d ( p , q ) exists f...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2018-04, Vol.225 (2), p.925-945 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let HD
d
(
p
,
q
) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (
p
,
q
)-property (
p
≥
q
≥
d
+ 1). In a celebrated proof of the Hadwiger–Debrunner conjecture, Alon and Kleitman proved that HD
d
(
p
,
q
) exists for all
p
≥
q
≥ d + 1. Specifically, they prove that
H
D
d
(
p
,
d
+
1
)
i
s
O
˜
(
p
d
2
+
d
)
.
We present several improved bounds: (i) For any
q
≥
d
+
1
,
H
D
d
(
p
,
d
)
=
O
˜
(
p
d
(
q
−
1
q
−
d
)
)
. (ii) For
q
≥ log
p
,
H
D
d
(
p
,
q
)
=
O
˜
(
p
+
(
p
/
q
)
d
)
. (iii) For every ϵ > 0 there exists a
p
0
=
p
0
(ϵ) such that for every
p
≥
p
0
and for every
q
≥
p
d
−
1
d
+
∈
we have
p
−
q
+ 1 ≤ HD
d
(
p
,
q
) ≤ p − q + 2. The latter is the first near tight estimate of HD
d
(
p
,
q
) for an extended range of values of (
p
,
q
) since the 1957 Hadwiger–Debrunner theorem.
We also prove a (
p
, 2)-theorem for families in
R
2
with union complexity below a specific quadratic bound. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-018-1685-1 |