Gaussian noise sensitivity and Fourier tails
We observe a subadditivity property for the noise sensitivity of subsets of Gaussian space. For subsets of volume 1/2, this leads to an almost trivial proof of Borell’s Isoperimetric Inequality for ρ = cos( π/2ℓ), ℓ ∈ N . Rotational sensitivity also easily gives the Gaussian Isoperimetric Inequality...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2018-04, Vol.225 (1), p.71-109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We observe a subadditivity property for the noise sensitivity of subsets of Gaussian space. For subsets of volume 1/2, this leads to an almost trivial proof of Borell’s Isoperimetric Inequality for ρ = cos( π/2ℓ), ℓ ∈
N
. Rotational sensitivity also easily gives the Gaussian Isoperimetric Inequality for volume-1/2 sets and a.8787-factor UG-hardness for Max-Cut (within 10
−4
of the optimum). As another corollary we show the Hermite tail bound
|
|
f
>
k
|
|
2
2
≥
Ω
(
V
a
r
[
f
]
)
.
1
k
f
o
r
:
R
n
→
{
−
1
,
1
}
. Combining this with the Invariance Principle shows the same Fourier tail bound for any Boolean
f
: {−1, 1}
n
→ {−1, 1} with all its noisy-influences small, or more strongly, that a Boolean function with tail weight smaller than this bound must be close to a junta. This improves on a result of Bourgain, where the bound on the tail weight was only
1
k
1
/
2
+
ο
(
1
)
. We also show a simplification of Bourgain’s proof that does not use Invariance and obtains the bound
1
k
log
1.5
k
. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-018-1646-8 |