State of health estimation and remaining useful life prediction of solid oxide fuel cell stack
•An approach for SOFC remaining useful life (RUL) prediction is developed.•Ohmic ASR is proposed as a state-of-health indicator of the stack.•An Unscented Kalman filter, employing lumped stack model, is used to estimate ASR.•A subsequent ASR drift model is identified recursively and used for RUL pre...
Gespeichert in:
Veröffentlicht in: | Energy conversion and management 2017-09, Vol.148, p.993-1002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •An approach for SOFC remaining useful life (RUL) prediction is developed.•Ohmic ASR is proposed as a state-of-health indicator of the stack.•An Unscented Kalman filter, employing lumped stack model, is used to estimate ASR.•A subsequent ASR drift model is identified recursively and used for RUL prediction.•Experimental validation is performed on 10kW SOFC stack in system environment.
Having concurrent information regarding the state of health (SoH) of an operating solid oxide fuel cell (SOFC) stack can actively improve its overall management. Firstly, operating the SOFC by taking into account current health conditions, and its anticipated trend, can be beneficial to the total life span of the stack. Furthermore, such information can be of great importance to the maintenance staff, e.g. unplanned shutdowns can be avoided.
Relatively little work has been done in the field of remaining useful life (RUL) prediction of SOFCs. The majority of work employs stack/cell voltage as a direct link for RUL predictions. This paper proposes an integrated approach for SoH estimation based on stack’s Ohmic area specific resistance (ASR). Subsequently, a drift model that describes the ASR increase over time enables accurate RUL prediction. The approach consists of three steps. Firstly, an Unscented Kalman filter, based on a lumped stack model, estimates the current ASR value. Secondly, a drift model for describing the temporal evolution in ASR is recursively identified employing the linear Kalman filter. Finally, employing the identified drift model, Monte Carlo simulation is performed to predict future time evolution in ASR and so to obtain RUL. The developed approach is validated with experimental data from a 10kW SOFC power system. The results confirm that ASR is a viable SoH indicator for the SOFC stack. |
---|---|
ISSN: | 0196-8904 1879-2227 |
DOI: | 10.1016/j.enconman.2017.06.041 |