Behavioral evidence for task-dependent "what" versus "where" processing within and across modalities
Task-dependent information processing for the purpose of recognition or spatial perception is considered a principle common to all the main sensory modalities. Using a dual-task interference paradigm, we investigated the behavioral effects of independent information processing for shape identificati...
Gespeichert in:
Veröffentlicht in: | Attention, perception & psychophysics perception & psychophysics, 2008-01, Vol.70 (1), p.36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Task-dependent information processing for the purpose of recognition or spatial perception is considered a principle common to all the main sensory modalities. Using a dual-task interference paradigm, we investigated the behavioral effects of independent information processing for shape identification and localization of object features within and across vision and touch. In Experiment 1, we established that color and texture processing (i.e., a "what" task) interfered with both visual and haptic shape-matching tasks and that mirror image and rotation matching (i.e., a "where" task) interfered with a feature-location-matching task in both modalities. In contrast, interference was reduced when a "where" interference task was embedded in a "what" primary task and vice versa. In Experiment 2, we replicated this finding within each modality, using the same interference and primary tasks throughout. In Experiment 3, the interference tasks were always conducted in a modality other than the primary task modality. Here, we found that resources for identification and spatial localization are independent of modality. Our findings further suggest that multisensory resources for shape recognition also involve resources for spatial localization. These results extend recent neuropsychological and neuroimaging findings and have important implications for our understanding of high-level information processing across the human sensory systems. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1943-3921 1943-393X |