On the secure domination numbers of maximal outerplanar graphs

A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u⁄∈S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. We show that if G is a maximal outerplane graph of n vertices, then G has a secure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-02, Vol.236, p.23-29
Hauptverfasser: Araki, Toru, Yumoto, Issei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u⁄∈S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. We show that if G is a maximal outerplane graph of n vertices, then G has a secure dominating set of size at most ⌈3n∕7⌉. Moreover, if a maximal outerplane graph G has no internal triangles, it has a secure dominating set of size at most ⌈n∕3⌉. Finally, we show that any secure dominating set of a maximal outerplane graph without internal triangles has more than n∕4 vertices.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2017.10.020