Minimax resource allocation problems: Optimization and parametric analysis

We consider a linear minimax resource allocation problem with single-variable terms in the objective function and multiple knapsack-type resource constraints. All variables are continuous and nonnegative. Efficient algorithms for such large-scale problems have been developed by Luss and Smith and by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1992-07, Vol.60 (1), p.76-86
1. Verfasser: Luss, Hanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a linear minimax resource allocation problem with single-variable terms in the objective function and multiple knapsack-type resource constraints. All variables are continuous and nonnegative. Efficient algorithms for such large-scale problems have been developed by Luss and Smith and by Tang. This paper describes an enhanced algorithm that provides a more efficient search for the optimal solution. Further, we develop post-optimization schemes and parametric analysis that are employed once an optimal solution for the original minimax problem is obtained. Post-optimization provides a perturbed optimal solution under a specified change in the data, whereas parametric analysis provides a continuum of optimal solutions when some data elements are changed over a given interval.
ISSN:0377-2217
1872-6860
DOI:10.1016/0377-2217(92)90335-7