Inversion Model of GPR Imaging Characteristics of Point Objects and Fracture Detection of Heritage Building

There are often many hidden structural defects in heritage buildings. As a convenient and effective nondestructive detecting method, ground-penetrating radar (GPR) has a technical advantage in detecting and protecting heritage buildings depending on the advanced image interpretation. The analytic re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2018-01, Vol.2018 (2018), p.1-10
Hauptverfasser: Hu, De-xiu, Yao, Xianchun, Yang, Jie, Li, Ning, Lv, Gao, Pang, Rixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are often many hidden structural defects in heritage buildings. As a convenient and effective nondestructive detecting method, ground-penetrating radar (GPR) has a technical advantage in detecting and protecting heritage buildings depending on the advanced image interpretation. The analytic relationship between buried depth and radius of point object and long and short axis of hyperbolic equation was established according to derivations of formulas. The image characteristics of hyperbolic curves with different depth and radius were studied by finite-difference time-domain method (FDTD). And then, inversion models of buried depth and radius of point object were established. The buried depth and radius can be accurately deduced by long and short axis of hyperbolic image. This result was applied in the detection of pedestal defects of the heritage building, and the depth and distribution range of hidden fracture can be accurately interpreted. It provides an effective and fast method to detect hidden defects in civil engineering.
ISSN:1687-725X
1687-7268
DOI:10.1155/2018/3095427