g-dominance: Reference point based dominance for multiobjective metaheuristics
One of the main tools for including decision maker (DM) preferences in the multiobjective optimization (MO) literature is the use of reference points and achievement scalarizing functions [A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in: G. Fandel, T. Gal (Eds.),...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2009-09, Vol.197 (2), p.685-692 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main tools for including decision maker (DM) preferences in the multiobjective optimization (MO) literature is the use of reference points and achievement scalarizing functions [A.P. Wierzbicki, The use of reference objectives in multiobjective optimization, in: G. Fandel, T. Gal (Eds.), Multiple-Criteria Decision Making Theory and Application, Springer-Verlag, New York, 1980, pp. 469–486.]. The core idea in these approaches is converting the original MO problem into a single-objective optimization problem through the use of a scalarizing function based on a reference point. As a result, a single efficient point adapted to the DM’s preferences is obtained. However, a single solution can be less interesting than an approximation of the efficient set around this area, as stated for example by Deb in [K. Deb, J. Sundar, N. Udaya Bhaskara Rao, S. Chaudhuri, Reference point based multiobjective optimization using evolutionary algorithms, International Journal of Computational Intelligence Research, 2(3) (2006) 273–286]. In this paper, we propose a variation of the concept of Pareto dominance, called
g-dominance, which is based on the information included in a reference point and designed to be used with any MO evolutionary method or any MO metaheuristic. This concept will let us approximate the efficient set around the area of the most preferred point without using any scalarizing function. On the other hand, we will show how it can be easily used with any MO evolutionary method or any MO metaheuristic (just changing the dominance concept) and, to exemplify its use, we will show some results with some state-of-the-art-methods and some test problems. |
---|---|
ISSN: | 0377-2217 1872-6860 |
DOI: | 10.1016/j.ejor.2008.07.015 |