Using group theory and transition matrices to study a class of metaheuristic neighborhoods

The one-step conjugative rearrangement neighborhood of all possible incumbent tours in an n-city single-agent Traveling Salesperson Problem is represented by a transition matrix. Using these matrices and employing group theory and the symmetric group on n letters, we show that all such matrices will...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2002-05, Vol.138 (3), p.531-544
Hauptverfasser: Barnes, J.W, Colletti, Bruce W, Neuway, David L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The one-step conjugative rearrangement neighborhood of all possible incumbent tours in an n-city single-agent Traveling Salesperson Problem is represented by a transition matrix. Using these matrices and employing group theory and the symmetric group on n letters, we show that all such matrices will fall into three different types: (1) irreducible matrices with one set of tours, (2) irreducible cyclic matrices of period 2 with two distinct sets of tours, and (3) reducible matrices with two equal-sized distinct sets of tours. In addition to giving the required conditions that yield each neighborhood type, we briefly discuss how these results are easily extended to multi-agent traveling salesperson problems and suggest directions for future investigations.
ISSN:0377-2217
1872-6860
DOI:10.1016/S0377-2217(01)00176-X