A genetic algorithm for the set covering problem

In this paper we present a genetic algorithm-based heuristic for non-unicost set covering problems. We propose several modifications to the basic genetic procedures including a new fitness-based crossover operator (fusion), a variable mutation rate and a heuristic feasibility operator tailored speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1996-10, Vol.94 (2), p.392-404
Hauptverfasser: Beasley, J.E, Chu, P.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a genetic algorithm-based heuristic for non-unicost set covering problems. We propose several modifications to the basic genetic procedures including a new fitness-based crossover operator (fusion), a variable mutation rate and a heuristic feasibility operator tailored specifically for the set covering problem. The performance of our algorithm was evaluated on a large set of randomly generated problems. Computational results showed that the genetic algorithm-based heuristic is capable of producing high-quality solutions.
ISSN:0377-2217
1872-6860
DOI:10.1016/0377-2217(95)00159-X