A general steady state distribution based stopping criteria for finite length genetic algorithms
We propose two general stopping criteria for finite length, simple genetic algorithms based on steady state distributions, and empirically investigate the impact of mutation rate, string length, crossover rate and population size on their convergence. Our first stopping criterion is based on the sec...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 2007-02, Vol.176 (3), p.1436-1451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose two general stopping criteria for finite length, simple genetic algorithms based on steady state distributions, and empirically investigate the impact of mutation rate, string length, crossover rate and population size on their convergence. Our first stopping criterion is based on the second largest eigenvalue of the genetic algorithm transition matrix, and the second stopping criterion is based on minorization conditions. |
---|---|
ISSN: | 0377-2217 1872-6860 |
DOI: | 10.1016/j.ejor.2005.10.050 |