A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems

The minimum sum-of-squares clustering problem is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the former problem based on nonsmooth optimization techniques is developed. The issue of applying this algorithm to large data sets is discussed. Results of num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2006-04, Vol.170 (2), p.578-596
Hauptverfasser: Bagirov, Adil M., Yearwood, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimum sum-of-squares clustering problem is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the former problem based on nonsmooth optimization techniques is developed. The issue of applying this algorithm to large data sets is discussed. Results of numerical experiments have been presented which demonstrate the effectiveness of the proposed algorithm.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2004.06.014