On the Relationship between the Dimension of the Lebesgue–Stieltjes Measure and the Rate of Approximation of a Function by Step Functions

The relationship between the rate of approximation of a monotone function by step functions (with an increasing number of values) and the Hausdorff dimension of the corresponding Lebesgue–Stieltjes measure is studied. An upper bound on the dimension is found in terms of the approximation rate, and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2018-03, Vol.97 (2), p.157-160
1. Verfasser: Tikhonov, Yu. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The relationship between the rate of approximation of a monotone function by step functions (with an increasing number of values) and the Hausdorff dimension of the corresponding Lebesgue–Stieltjes measure is studied. An upper bound on the dimension is found in terms of the approximation rate, and it is shown that a lower bound cannot be constructed in these terms.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562418020151