An approach of orthogonalization within the Gram–Schmidt algorithm
In this paper we consider the variants of Gram–Schmidt such as Classical Gram–Schmidt and Modified Gram–Schmidt algorithms. It is shown that for problems of dimension more than two the round-off error of operation q 1 T q 2 has more propagation in both of algorithms. To cure this difficulty we will...
Gespeichert in:
Veröffentlicht in: | Computation and applied mathematics 2018-05, Vol.37 (2), p.1250-1262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the variants of Gram–Schmidt such as Classical Gram–Schmidt and Modified Gram–Schmidt algorithms. It is shown that for problems of dimension more than two the round-off error of operation
q
1
T
q
2
has more propagation in both of algorithms. To cure this difficulty we will present an algorithm, namely Optimized Modified Gram–Schmidt algorithm. Numerical examples indicate the accuracy of this algorithm. We show that this method can improve the loss of orthogonality of the orthogonalization in some ill-conditioned cases. |
---|---|
ISSN: | 0101-8205 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-016-0389-6 |