Facility location in the presence of forbidden regions, I: Formulation and the case of Euclidean distance with one forbidden circle

A constrained form of the Weber problem is formulated in which no path is permitted to enter a prespecified forbidden region R of the plane. Using the calculus of variations the shortest path between two points x, y ∉ R which does not intersect R is determined. If d( x, y) is unconstrained distance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 1981-02, Vol.6 (2), p.166-173
Hauptverfasser: Katz, I.Norman, Cooper, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A constrained form of the Weber problem is formulated in which no path is permitted to enter a prespecified forbidden region R of the plane. Using the calculus of variations the shortest path between two points x, y ∉ R which does not intersect R is determined. If d( x, y) is unconstrained distance, we denote the shortes distance along a feasible path by d( x y) . The constrained Weber problem is, then: given points x j∉ R and positive weights w j , j = 1,2,…, n, find a point x∉ R such that f( x)= Σ n j=1 d( x, x j) is a minimum. An algorithm is formulated for the solution of this problem when d( x, y) is Euclidean distance and R is a single circular region. Numerical results are presented.
ISSN:0377-2217
1872-6860
DOI:10.1016/0377-2217(81)90203-4