Control of arrivals to two queues in series
We consider two queues in series with input to each queue, which can be controlled by accepting or rejecting arriving customers. The objective is to maximize the discounted or average expected net benefit over a finite or infinite horizon, where net benefit is composed of (random) rewards for enteri...
Gespeichert in:
Veröffentlicht in: | European journal of operational research 1985-09, Vol.21 (3), p.399-409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider two queues in series with input to each queue, which can be controlled by accepting or rejecting arriving customers. The objective is to maximize the discounted or average expected net benefit over a finite or infinite horizon, where net benefit is composed of (random) rewards for entering customers minus holding costs assessed against the customers at each queue. Provided that it costs more to hold a customer at the first queue than at the second, we show that an optimal policy is monotonic in the following senses: Adding a customer to either queue makes it less likely that we will accept a new customer into either queue; moreover moving a customer from the first queue to the second makes it more (less) likely that we will accept a new customer into the first (second) queue. Our model has policy implications for flow control in communication systems, industrial job shops, and traffic-flow systems. We comment on the relation between the control policies implied by our model and those proposed in the communicationa literature. |
---|---|
ISSN: | 0377-2217 1872-6860 |
DOI: | 10.1016/0377-2217(85)90160-2 |