Quadratic forms representing all integers coprime to 3
Following Bhargava and Hanke’s celebrated 290-theorem, we prove a universality theorem for all positive-definite integer-valued quadratic forms that represent all positive integers coprime to 3. In particular, if a positive-definite quadratic form represents all positive integers coprime to 3 and ≤...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2018-06, Vol.46 (2), p.431-446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following Bhargava and Hanke’s celebrated 290-theorem, we prove a universality theorem for all positive-definite integer-valued quadratic forms that represent all positive integers coprime to 3. In particular, if a positive-definite quadratic form represents all positive integers coprime to 3 and
≤
290, then it represents all positive integers coprime to 3. We use similar methods to those used by Rouse to prove (assuming GRH) that a positive-definite quadratic form representing every odd integer between 1 and 451 represents all positive odd integers. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-016-9883-0 |