Quadratic forms representing all integers coprime to 3

Following Bhargava and Hanke’s celebrated 290-theorem, we prove a universality theorem for all positive-definite integer-valued quadratic forms that represent all positive integers coprime to 3. In particular, if a positive-definite quadratic form represents all positive integers coprime to 3 and ≤...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2018-06, Vol.46 (2), p.431-446
Hauptverfasser: DeBenedetto, Justin, Rouse, Jeremy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following Bhargava and Hanke’s celebrated 290-theorem, we prove a universality theorem for all positive-definite integer-valued quadratic forms that represent all positive integers coprime to 3. In particular, if a positive-definite quadratic form represents all positive integers coprime to 3 and ≤ 290, then it represents all positive integers coprime to 3. We use similar methods to those used by Rouse to prove (assuming GRH) that a positive-definite quadratic form representing every odd integer between 1 and 451 represents all positive odd integers.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-016-9883-0