Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic

This paper studies an approximation to the Chebyshev polynomial  T n computed via a three-term recurrence in floating-point arithmetic. It is shown that close to either endpoint of the interval [ - 1 , 1 ] , the numerical approximation coincides with the line tangent to T n at that endpoint. From th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2018-06, Vol.58 (2), p.317-330
Hauptverfasser: Hrycak, Tomasz, Schmutzhard, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies an approximation to the Chebyshev polynomial  T n computed via a three-term recurrence in floating-point arithmetic. It is shown that close to either endpoint of the interval [ - 1 , 1 ] , the numerical approximation coincides with the line tangent to T n at that endpoint. From this representation new upper and lower error bounds are derived.
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-017-0683-8