Evaluation of Chebyshev polynomials by a three-term recurrence in floating-point arithmetic
This paper studies an approximation to the Chebyshev polynomial T n computed via a three-term recurrence in floating-point arithmetic. It is shown that close to either endpoint of the interval [ - 1 , 1 ] , the numerical approximation coincides with the line tangent to T n at that endpoint. From th...
Gespeichert in:
Veröffentlicht in: | BIT 2018-06, Vol.58 (2), p.317-330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies an approximation to the Chebyshev polynomial
T
n
computed via a three-term recurrence in floating-point arithmetic. It is shown that close to either endpoint of the interval
[
-
1
,
1
]
, the numerical approximation coincides with the line tangent to
T
n
at that endpoint. From this representation new upper and lower error bounds are derived. |
---|---|
ISSN: | 0006-3835 1572-9125 |
DOI: | 10.1007/s10543-017-0683-8 |